

Greener Chemistry via the Application of Novel Oxidation Technology Carl Deering May 17, 2019

- The goal of this project was to selectively oxidize a hindered secondary alcohol
 - Reaction needed to go to completion
 - Without forming any impurities (making API)
 - Without adding significant cost.
- This API is also the starting material for other API's
 - If the cost goal was met it would reduce their costs also

Pfizer Search for Alternative Oxidations

- Numerous methods to oxidize 2° alcohols to ketones
- Most do not fit the needs of the project
 - Heavy Metals (Cr, Mn, Rh, Ru, Pt, Pd, etc.) which can be toxic (disposal issues) or expensive (require recycle)
 - Dangerous oxidants peroxides, hypervalent iodide, etc. can be explosive
 - \circ Hazardous reaction conditions (O₂ / air atmosphere) fires / explosions
 - Harsh conditions which lead to impurities and low yields
- It is very challenging to develop a "Clean", "Safe", and "Inexpensive" commercial oxidation process
- Three methods were explored in the laboratory
 - Chromium (IV) oxidation toxic metal and requires significant waste disposal
 - STP oxidation (variation of the Swern) odor issues and chemistry was dirty (thioacetal)
 - TEMPO / Bleach oxidation incomplete reactions despite high catalyst loading
 - Most promising

TEMPO Catalyst Derivatives

- Screened 8 TEMPO derivatives but none were adequate (grossly incomplete rxns LT 20% product)
 - Remote functionality at the 4 position has no effect
- Why doesn't the TEMPO/Bleach oxidation work on our substrate?
 - Catalyst instability is not the likely cause since these catalysts perform well with other less hindered substrates
 - Even rxns with high catalyst loadings failed (0.5eq)
- Hypothesis: TEMPO-catalysts are too sterically hindered to react with the bulky alcohol
- Hypothesis Testing: Use a less sterically crowded nitroxyl radical catalyst (if one exists)
 - Tetramethylpiperidine functionality is essential for the stability of the nitroxyl radical, and thus the active catalyst, since there are no α -H for abstraction, but it imparts significant steric bulk

Tetramethylpiperidine (Tempo) type catalysts will not work

Pfizer Nitroxyl Radical Catalysts (AZADO)

- A structure-based literature search identified several obscure nitroxyl radical catalysts
- AZADO (2-azaadamantane-*N*-oxyl) originally synthesized in 1975 for ESR spectroscopy exps
- AZADO was 1st reported in the literature in 2006 as an oxidation catalyst
- Only ADADO and 1-Me-AZADO, were commercially available (mg quantities from Aldrich)

Highly Active Catalyst AZADOL®

AZADO

AZADOL

- Found these two compound were currently available
 - Only from Nissan Chemical Industries, Ltd. (Japan) initially limited quantities
- No cmp patents, but two process patents for the preparation of AZADOL[®] (2-Azaadamantan-2-ol)
- AZADOL[®] is a more stable catalyst for storage and has the same catalytic activity as AZADO
 - AZADOL[®] is a white crystalline solid that is stable at room temperature
 - AZADO is a bright red crystal that requires freezer storage
- AZADOL[®] costs \$35,000-45,000/Kg

- AZADOL[®] worked astonishingly well in the first laboratory use-test! It was far superior to all TEMPO derivatives!
 - Reactions went to completion (99% conversion of starting material)
 - Reactions were relatively clean with the exception of brominated impurities (1-9 area%)
- Successful lab demonstration of the proof of concept (POC) of this new technology

AZADOL®Oxidation Process

- Process optimized through Design of Experiments (DOE)
 - Minimized total imps. (reduced from 1-9% to LT 0.3 area%)
 - Maximized reaction concentration- increase throughput for lower COGs
 - Optimized reaction temperature
 - \circ Amounts of reagents (KBr, NaHCO₃ and NaOCI)
 - Minimized AZADOL[®] loading
- Nissan had not produced significant quantities AZADOL®

AZADOL®Oxidation Process

- Demonstration in Pilot Plant in July 2013
 - Ran 6 successful batches (high conversion, yields and purity)
 - 45 90 Kg
- 1st large-scale application of this new technology!
- The success of the campaign established the foundation for this oxidation technology platform

- Steric hindrance about ammonium cation precludes rxn with bulky 2° alcohols
- The cage-like structure of AZADOL[®] is more stable and less likely to eliminate (cannot become anti-periplanar because of rigid ring structure) than TEMPO derivatives resulting in high turnover numbers

1F/2F Process

• Can AZADOL/TEMPO chemistry replace the CrO₃ used in the current 1F step?

- AZADOL is the only competent catalyst ٠
- All TEMPO derivatives perform very poorly (LT 20% conversion) despite 30X ٠ loading
- Catalyst loading: AZADOL[®] 0.03 mole% vs. TEMPO (derivatives) 1.0 mole% ٠

1F/2F Process

- We developed a new 1F process (1FA) to oxidize HP to 1F in the lab (DOE)
- We successfully demonstrated this process (2FA) in a three lot PT
 - 2F Process is a telescoped process
- No impurities were present above historical (mean + 3SD)
- No new impurities were detected by LC at or above 0.10%
- Potencies were equivalent to historical 2F
- 2FA Yields were comparable or higher than historical (81-82%wt)
- Process cycle times were comparable or faster than typical (18hrs)
- 10's of grams of AZADOL[®] (\$2100) was used to catalyze the oxidation of 100's of Kg of HP!

10's of grams of AZADOL catalyzes the oxidation of 100's of Kg of HP!

JOURNEY TO MOST FRUSTED

New 2FA Process

Environment	>	Eliminates use 52MT/yr of CrO ₃ solution or 21MT/yr of CrO ₃ solids
	\succ	Eliminates 1,000,000 L /yr of waste disposal (5700L/lot)
		This would fill 8 DOT tanker cars/yr or 1 Olympic-sized
		swimming pool every 2.5yrs
	\succ	80% reduction in chromium usage and waste disposal
Health	\geq	Eliminates potential operator exposure to CrO ₃ which is a known
		human carcinogen
Safety	\succ	Eliminates the potential for fires/explosions (CrO ₃ is a strong
		oxidizer and possible ignition source of organic compounds!)
	\succ	Eliminates CrO ₃ drum handling (~180 drums/yr)
Cost of Goods	\geq	Small ~2% yield increase
	\succ	Slightly lower COGs
Implementation	\geq	Commercial batches since 2015
	\geq	Other potential CrO ₃ oxidations (1DEB, 2PE) that may be potential
		candidates for AZADOL [®] oxidations

Remove the use of 52 MT of Chromium trioxide each year

Acknowledgements

PPT

Scott Ashford Carla Campbell Kyle Chisholm Steve Dick Randy Homic Marc Mellinger Donald Zeilenga

Quality Operations

Kelly Douglas Cynthia Fletcher Richard Lee

B91 API Production

Rod Mason B91 Operators

B149 API Production

David Stagray B149 Operators

EHS Adam Muir

PGS Procurement

James Bollnow

